First Racket Programming Assignment Solution
 By JIUN KIM

Learning Abstract

In this assignment I learned a little bit about numeric computations in Lisp. I also learned how to bind variables to values. I solved a couple of numeric problems by using basic arithmetic operations. And I learned to use a Racket library to create and display shapes so that I could render the problem situations graphically.

All of this took place within the Interactions pane of the DrRacket PDE.

```
Interaction: Simple Numeric
            Processing
    > 5
5
> 5.3
5.3
>(*3 10)
30
> ( + ( * 3 10 ) 4 )
34
>(* 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 )
12157665459056928801
> |
```


Interaction: Solution to the Scrap Problem

The Scrap Problem: A circular disk of maximal size is cut from a square piece of tin of side 100 units. What is the area of the scrap?
$>$ pi
3.141592653589793
$>$ side
. . side: undefined;
cannot reference an identifier before its definition
$>$ (define side 100)
$>$ side
100
> (define square-area (* side side))
> square-area
10000
$>$ (define radius (/side 2))
> radius

50

> (define circle-area (* pi radius radius)) > circle-area
7853.981633974483
> (define scrap-area (- square-area circle-area))
> scrap-area
2146.018366025517

Interaction: Illustration of Scrap Problem Situation

Interaction: Illustration of the Target Problem Situation

[^0]

Interaction: Solution to Target Problem

$>$ (define the-percentage $\left(/\left(+\left(-{ }^{*}\right.\right.\right.$ radius radius) $\left(^{*}\left({ }^{*} 0.75\right.\right.$ radius $)\left({ }^{*} 0.75\right.$ radius $\left.\left.)\right)\right)(*$ (/ radius 7) (/ radius 7))) (* radius radius)))
$>$ the-percentage
0.45790816326530615

[^0]: $>$ (define red-disk (circle radius "solid" "red"))
 $>$ (define blue-disk (circle (* radius 0.75) "solid" "blue"))
 $>($ define red-disk2 (circle (/ radius 7) "solid" "red"))
 $>$ (define the-target (overlay red-disk2 blue-disk red-disk))
 $>$ the-target

